
FlowTrust: Trust Inference with Network Flows
Guojun Wang and Jie Wu

F

Abstract—Web-based social networking is increasingly gaining pop-
ularity due to the rapid development of computer networking tech-
nologies. However, social networking applications still cannot obtain
a wider acceptance by many users due to some unresolved issues,
such as trust, security, and privacy. Trust, in social networks, mainly
studies whether a remote user, called a trustee, behaves as expected
by an interested user, called a trustor, through other users, called
recommenders. A trusted graph consists of a trustor, a trustee, recom-
menders, and trust relationships among them. In this paper, we propose
a novel FlowTrust approach to model a trusted graph with network flows,
and evaluate the maximum amount of trust that can flow among a
trusted graph using the network flow theory. FlowTrust supports multi-
dimensional trust. We use trust value and confidence level as two trust
factors. We deduce four trust metrics from these two trust factors, which
are maximum flow of trust value, maximum flow of confidence level,
minimum cost of uncertainty with maximum flow of trust value, and
minimum cost of untrust with maximum flow of confidence level. We also
propose three FlowTrust algorithms to normalize these four trust metrics.
We compare our proposed FlowTrust approach with existing RelTrust
and CircuitTrust approaches. We have shown that all three approaches
are comparable to each other in terms of the inferred trust values.
Therefore, FlowTrust is the best of the three since it also supports multi-
dimensional trust.

Index Terms—Trust inference, multi-dimensional trust, approximate
algorithm, network flows, social networks

1 INTRODUCTION

A social network is a social structure made up of peo-
ple, called “nodes”, which are connected by social rela-
tions, such as friendship or business partnership, called
“links”. Web-based social networking is increasingly
gaining popularity due to the rapid development of com-
puter networking technologies. Many social networking
websites have been developed, or are emerging, such
as MySpace [15], Facebook [3], and LinkedIn [12]. Large
social networks are connecting hundreds of millions of
people. However, social networking applications still
cannot obtain a wider acceptance by many users due
to some unresolved issues, such as trust, security, and
privacy. We address the trust issue and its models in
this paper.

• G. Wang is with School of Information Science and Engineering, Central
South University, Changsha, Hunan Province, P. R. China, 410083.
E-mail: csgjwang@mail.csu.edu.cn.

• J. Wu is with Department of Computer and Information Sciences, Temple
University, Philadelphia, PA 19122, USA.
E-mail: jiewu@temple.edu.

Fig. 1. An example trusted graph.

Trust, in social networks, mainly studies whether a
remote user behaves as expected by an interested user
through other users. An interested user (called trustor)
may not be aware of a remote user (called trustee)
before they make any real communications. That is,
direct trust that a trustor puts on a trustee, is often not
available in large social networks. Therefore, it is very
important to study indirect trust, which a trustor puts
on a trustee, through other users (called recommenders).
This is also called recommendation trust. It should be
pointed out that they are different from the referral trust
and functional trust proposed in [9] by Jøsang.

Recommendation trust is often evaluated through a
trusted graph. A trusted graph consists of a trustor, a
trustee, recommenders, and trust relationships among
them. A trusted graph is a directed acyclic graph (DAG),
where the trustor is the only node that has no edge
pointing to itself, and the trustee is the only node that
has no edge pointing from itself. Fig. 1 shows an example
trusted graph with the trustor u and the trustee v. The
first number on each edge (i, j) is the total amount of
trust value that node i puts on node j, and the second
number is the total amount of confidence level that i
perceives on j, regarding the trust value. Both numbers
take values from the real interval (0, 1]. The larger
these values, the more trustworthiness, or the higher
confidence, they have.

Trust inference based on a trusted graph has been
studied for many years. However, most existing works
used a graph simplification-based approach to sim-
plify a trusted graph into node/edge-disjoint multiple
paths [16], or a directed series-parallel graph (DSPG) [4].
The information-loss problem is caused by the simplifi-
cation of trusted graphs, and thus some trusted paths
and trust relationships cannot be taken into account for
trust inference. In order to solve this problem, some
researchers proposed to directly deal with any trusted

2

graph for trust inference, which does not remove any
trust relationships from the original trusted graphs. Ex-
isting works used a system success diagram in the net-
work reliability theory [2], [17], and a resistive network
in the circuit theory [9], to emulate a trusted graph.
We call this approach the graph analogy-based approach.
There are also some approaches using classic mathemat-
ical algorithms to infer trust, such as fuzzy logic [10],
and Bayesian theory [8].

In this paper, the graph analogy-based approach with
the network reliability theory is also called the RelTrust
approach [13], and the graph analogy-based approach
with the circuit theory is also called the CircuitTrust
approach [19]. Their problem is that they can only deal
with one trust factor. The reason is that both theoretical
frameworks support only one parameter, i.e., reliability
and resistance, respectively. The network flow theory
has been successfully used to model traffic flows in
transportation systems, fluids in pipes, and currents in
electrical circuits. The trust metrics in trusted graphs
have common attributes similar to electrical currents and
transportation traffics. In this paper, we made the first
attempt at measuring trust using the network flow the-
ory to achieve the trust evaluation in trust management
systems.

Recent research shows that trust is inherently multi-
dimensional [5], [7], [23], [21], including multiple trust
factors, such as trust value and confidence level. The
graph simplification-based approach can support multi-
dimensional trust. But, it has the information-loss prob-
lem. The graph analogy-based approach uses all the
information in a trusted graph. But, it cannot sup-
port multi-dimensional trust. Our work leverages the
graph analogy-based approach and considers the multi-
dimensional trust as well. Our contributions are three-
fold:

1) Traditionally, network flows are used to model
traffics in transportation systems, fluids in pipes, or
currents in electrical circuits. We propose a novel
FlowTrust approach to model a trusted graph with
network flows, and evaluate the maximum amount
of trust that can flow among a trusted graph using
the network flow theory.

2) FlowTrust supports multi-dimensional trust. We
use trust value and confidence level as two trust
factors. We deduce four trust metrics from these
two trust factors, which are maximum flow of
trust value, maximum flow of confidence level,
minimum cost of uncertainty with maximum flow
of trust value, and minimum cost of untrust with
maximum flow of confidence level. We also pro-
pose three FlowTrust algorithms to normalize these
four trust metrics.

3) We compare our proposed FlowTrust approach
with existing RelTrust and CircuitTrust approaches.
Since RelTrust and CircuitTrust do not support
multi-dimensional trust, we only compare the in-
ferred trust values by all three approaches. We have

shown that all three approaches are comparable to
each other in terms of the inferred trust values.
Therefore, FlowTrust is the best of the three since
it also supports multi-dimensional trust.

The rest of this paper is organized as follows: In the
next section, we introduce some related works. In Sec-
tion 3, we overview the proposed FlowTrust approach
with definitions of maximum flow and minimum cost
flow, and four trust metrics based on them. In Section 4,
we propose three algorithms in FlowTrust. In Section 5,
we conduct simulation studies on the FlowTrust ap-
proach in comparison with the RelTrust and CircuitTrust
approaches. Finally, in Section 6, we conclude this paper
and shed some light on future works.

2 RELATED WORKS

Trust inference based on trusted graphs has been studied
for many years. Our proposed FlowTrust is related to
both the graph simplification-based approach and the
graph analogy-based approach by taking the advantages
of both approaches, while limiting their disadvantages.

2.1 Graph Simplification-based Approach

Mui et al [14], Theodorakopoulos et al [20], Sun et
al [18], and Golbeck et al [6] proposed to use node/edge-
disjoint multiple paths between two unknown partici-
pants, selected from a trusted graph. In the case of node-
disjointness, each node appears in at most one path, that
is, each node, except for the trustor itself, makes at most
one recommendation in a trusted graph. In the case of
edge-disjointness, each edge appears in at most one path,
that is, a recommendation from one node to another
node can be used at most once among those multiple
paths. The graph simplification-based approach with
disjoint paths has the advantage of achieving fairness
since it restricts the impact of each node or each edge to
the minimum.

Zuo et al [24] studied a framework for trust evaluation
based on a set of trusted chains in a trusted graph. In
order to maximize the trust value of the trustee evalu-
ated based on a trusted graph, they proposed a notion
of a base trusted chains set. This notion is similar, but
different from the notion of node/edge-disjoint multiple
paths because the inferred trust value will be maximized
when this set is used. The problem is that there may
not exist an efficient algorithm to identify the set. So,
the authors proposed an algorithm to identify the set
through exhaustive enumeration.

In [11], Jøsang et al presented a method for simplifying
a complex network to a directed series-parallel graph
(DSPG), which can be constructed by a sequence of series
and parallel compositions. A DSPG is more general than
node/edge-disjoint multiple paths. However, a DSPG
may not be able to achieve fairness because some nodes
or edges may be shared by multiple paths.

3

Rel(u, v)=T(u, v)=0.43

Fig. 2. An example network of failure-prone elements
transformed from the example trusted graph in Fig. 1.

2.2 Graph Analogy-based Approach

Since the graph simplification-based approach has the
information-loss problem, researchers are exploring the
similarity between trusted graphs in the trust domain,
and networks or diagrams in other domains. Once such
a similarity is identified, a trusted graph can be emulated
by a network or diagram in other domains. Then, the
trust value can be inferred by existing methods in other
domains. So, we call this approach the graph analogy-
based approach, including RelTrust [13] and Circuit-
Trust [19].

In RelTrust, the basic idea is to emulate a trusted graph
from a trustor u to a trustee v with a network of failure-
prone elements between two terminals u and v, and
then apply the network reliability theory to calculate the
probability that the network is operational, regarding
u and v. Finally, this probability, denoted Rel(u, v), is
viewed as the inferred trust value that the trusted graph
has, denoted T (u, v). That is:

Rel(u, v) = T (u, v).

Fig. 2 shows an example network of failure-prone ele-
ments, which is transformed from the example trusted
graph in Fig. 1. Notice that only the trust values, i.e., the
first numbers at each pair of numbers associated with
each edge in the example trusted graph, are used for
making the graph transformation.

In CircuitTrust, the basic idea is to emulate a trusted
graph with a resistive network, using a logarithmic func-
tion to map between the trust values and the resistance
values, that is:

r = − logb t,

where r is the resistance value of the resistor assigned
to the trust relation, which has the value t, and b(> 0) is
the base of the logarithmic function. Then, we compute
the equivalent resistance value between u and v, denoted
Req(u, v). Finally, the inferred trust value between u and
v, called T (u, v), can be calculated from the following
equation:

T (u, v) = b−Req(u,v).

Fig. 3 shows an example resistive network, which is
transformed from the example trusted graph in Fig. 1.
Notice that only the trust values, i.e., the first numbers
at each pair of numbers associated with each edge in the

(u,v)=1.12 T(u,v)=0.46eqR

Fig. 3. An example resistive network transformed from
the example trusted graph in Fig. 1 (Base b = 2).

example trusted graph, are used for making the graph
transformation.

The problem with both RelTrust and CircuitTrust is
that they can only deal with one trust factor, i.e., the
overall trust value or trustworthiness. In this paper,
we propose to deal with multi-dimensional trust, i.e.,
multiple trust factors, using a novel graph analogy-based
approach, called FlowTrust.

3 PRELIMINARIES

Let G = (V, E) be a DAG, representing a trusted graph,
where V is the set of nodes in G, and E is the set of edges
in G. Let u and v be two distinct nodes in G, where u
stands for a trustor and v stands for a trustee. Each edge
in E, for example, from node i to node j, has two trust
factors, namely, trust value t(i, j) and confidence level
c(i, j), both of which take values from the real interval
(0, 1].

In terms of the network flow theory, the two trust fac-
tors are also called capacities. Here, a capacity represents
the maximum amount of flow that can pass through an
edge. For example, in the case of the capacity of trust
value t(i, j), it represents the maximum amount of flow
of trust value that can pass through the edge from node i
to node j. In this section, we first introduce the network
flow theory with the maximum flow and minimum cost
flow problems. Then, we define four trust metrics by
applying the network flow theory.

Let G = (V,E) be a DAG with u and v being the source
and the sink of V , respectively. The capacity of an edge
from node i to node j is a mapping cap : E → R+,
denoted cap(i, j), which is a non-negative number, rep-
resenting the maximum amount of commodity that can
“flow” through the edge per unit of time in a steady-state
situation. A flow from node i to node j is a mapping
f : E → R+, denoted f(i, j), subject to the following
two constraints:

1) f(i, j)≤cap(i, j), for each (i, j)∈E (capacity con-
straint);

2)
∑

i:(i,j)∈E f(i, j)=
∑

i:(j,i)∈E f(j, i), for each
j∈V \{u, v} (conservation law).

The flow of a network G is defined by:

F =
∑

i:(u,i)∈E f(u, i),

4

MaxT=0.90 MaxP=2

Fig. 4. An example maximum flow of trust value.

where u is the source of G. Equivalently, it can also be:

F =
∑

i:(i,v)∈E f(i, v),

where v is the sink of G. It represents the amount of flow
passing from the source to the sink. The maximum flow
problem is to maximize F , that is, to route as much flow
as possible from u to v.

Then, we introduce the minimum cost flow problem.
Let the cost of an edge (cost(i, j)), which is a non-
negative number, represents the amount of “cost” when
a unit of commodity “flows” through the edge. The
minimum cost flow problem is to minimize the total cost:

∑
i,j∈V cost(i, j) ∗ f(i, j)

under the constraint of the same network flow F . A
variant of this problem is to minimize the total cost of
the flow and to maximize the network flow at the same
time, which is also called the minimum cost maximum
flow problem.

Just like the concept of ”opinion” to describe the trust
metrics based on subjective logic theory, we define four
trust metrics with trust factors based on the network
flow theory in the following:

Definition 1: Maximum Flow of Trust Value (MaxT).
Given G = (V,E), a trustor u, and a trustee v in V , when
the capacity of an edge cap(i, j) is given by the trust
value t(i, j) that node i puts on node j, the maximum
flow of G is called the maximum flow of trust value.

Fig. 4 shows an example maximum flow of trust value.
The second number on each edge (i, j) is the capacity
(here, the total amount of trust value) that node i puts
on node j, and the first number is the flow (here, the
portion of trust value) that node i takes out of the total
amount of trust value on node j. This figure shows that
the maximum flow of trust value is 0.9, which is 0.5 +
0.4 = 0.9 from the perspective of u, and 0.4 + 0.5 = 0.9
from the perspective of v. In addition, MaxP , shown
in this figure, is the maximum number of edge-disjoint
paths from u to v, which will be further discussed in the
next section to normalize the trust metrics. For example,
the normalized trust value in this example will be:

MaxT
Maxp = 0.9

2 = 0.45.

Definition 2: Maximum Flow of Confidence Level
(MaxC). Given G = (V,E), a trustor u, and a trustee
v in V , when the capacity of an edge cap(i, j) is given

by the confidence level c(i, j), regarding the trust value
that node i puts on node j, the maximum flow of G is
called the maximum flow of confidence level.

Due to space restriction, we cannot draw a figure for
an example maximum flow of confidence level, which
would be similar to Fig. 4.

Definition 3: Minimum Cost of Uncertainty with Max-
imum Flow of Trust Value (MinCMaxT). Given G =
(V, E), a trustor u, and a trustee v in V . Also, given the
capacity of an edge cap(i, j), represented by the trust
value t(i, j) that node i puts on node j, and the cost of
an edge cost(i, j), represented by the uncertainty that is
simply defined as “1-confidence value”, i.e., 1 − c(i, j).
Then, the minimum cost maximum flow problem is
defined as minimizing the uncertainty and maximizing
the flow of the trust value at the same time.

Generally speaking, we can find a maximum of the
trust value with the “highest” total confidence. Fig. 5
shows an example minimum cost of uncertainty with
maximum flow of trust value. The same goes for Fig. 4,
where it shows the same amount of maximum flow of
trust value (MaxT = 0.9, but this figure also shows the
minimum cost of uncertainty (MinCMaxT=0.66).

Definition 4: Minimum Cost of Untrust with Maximum
Flow of Confidence Level (MinTMaxC). Given G = (V,E),
a trustor u, and a trustee v in V . Also, given the capacity
of an edge cap(i, j), represented by the confidence level
c(i, j), regarding the trust value that node i puts on node
j, and the cost of an edge cost(i, j), represented by the
untrust that is simply defined as “1-trust value”, i.e., 1−
t(i, j). Then, the minimum cost maximum flow problem
is defined as minimizing the untrust and maximizing the
flow of the confidence level at the same time.

Generally speaking, we find a maximum of the confi-
dence level with the “highest” total trust. Due to space
restriction, however, we cannot draw a figure for an
example minimum cost of untrust and maximum flow
of confidence level, which would be similar to Fig. 5.

4 FLOWTRUST ALGORITHMS

FlowTrust contains three algorithms, each of which takes
a trusted graph, and also the trust value and confidence
level factors for each edge in the graph, as inputs,
and outputs four normalized trust metrics to show
how much trust the trusted graph contains. We name
the three algorithms “Basic FlowTrust algorithm” (B-
FlowTrust), “Edge preprocessing-based FlowTrust algo-
rithm” (E-FlowTrust), and “Graph simplification-based
FlowTrust algorithm” (G-FlowTrust), respectively. The
proposed three algorithms do not rely on each other,
but they are still comparable to a certain degree. All
algorithms are based on the network flow theory and the
maximum flow and minimum cost flow, in particular.

5

MinCMaxT=0.66 MaxT=0.90 MaxP=2

Fig. 5. An example minimum cost of uncertainty with
maximum flow of trust value.

4.1 Algorithm Design

4.1.1 Basic FlowTrust Algorithm (B-FlowTrust)
Definitions 1-4 implicitly show how to compute those
four trust metrics of our FlowTrust approach by applying
the maximum flow and minimum cost flow algorithms.
However, those metrics have strong relationships with
the sizes of the trusted graphs, and particularly, the
maximum numbers of edge-disjoint paths in the trusted
graphs. Generally speaking, if the maximum number
of edge-disjoint paths of a trusted graph is larger, all
four of those metrics also become larger. Therefore, we
propose to normalize those metrics by dividing them
with the maximum number of edge-disjoint paths in the
trusted graph. That is, our basic FlowTrust algorithm (B-
FlowTrust) first computes those four trust metrics, and
then deduces four normalized trust metrics, accordingly.
Below, we only show this basic algorithm from the
perspective of Maximum Flow of Trust Value (MaxT) (See
Definition 1).

Given a trusted graph G = (V, E), and two distinct
nodes u and v in V , we first find the maximum flow
of trust value from u to v, denoted MaxT , and then
we find the maximum number of edge-disjoint paths
from u to v, denoted MaxP . Finally, we divide MaxT
by MaxP , denoted Tb, representing the normalized trust
value inferred from this basic algorithm. If we view
the MaxP paths as a “backbone” of the trusted graph
G, then Tb can be viewed as the average flow of trust
value that “flows” through each of the MaxP paths.
Algorithm 1 shows this basic algorithm. Notice that we
get MaxP in the same way as MaxT , by applying the
maximum flow algorithm, but the edge capacity (here,
the trust value) of each edge in the trusted graph is set
to 1.

4.1.2 Edge Preprocessing-based FlowTrust Algorithm
(E-FlowTrust)
The time complexities of the maximum flow and mini-
mum cost flow algorithms are relatively high. Therefore,
some approximate and/or distributed algorithms have
been developed. In this subsection, we propose an ap-
proximate approach to normalizing those trust metrics,
as defined in Section 3 (See Definitions 1-4). In this
approach, each trust metric is automatically normalized
without the need to compute the maximum number of

Algorithm 1 Basic FlowTrust Algorithm from the per-
spective of Maximum Flow of Trust Value (MaxT)

1: Input: A trusted graph G = (V, E), u, v ∈ V ,
2: and the trust value t(i, j),∀(i, j) ∈ E
3: Output: The normalized trust value Tb

4: Let MaxT be the maximum flow of trust value of G
5: from u to v with t(i, j) as the edge capacity
6: Let MaxP be the maximum number of edge-disjoint
7: paths of G from u to v
8: Return Tb = MaxT

MaxP

Algorithm 2 Edge Preprocessing-based FlowTrust Algo-
rithm from the perspective of Maximum Flow of Trust
Value (MaxT)

1: Input: A trusted graph G = (V, E), u, v ∈ V ,
2: and the trust value t(i, j),∀(i, j) ∈ E
3: Output: The normalized trust value Te

4: For each t(i, j) Do{
5: Let δi be node degree of i (indegree + outdegree)
6: Let δj be node degree of j (indegree + outdegree)
7: If δi ≥ δj Then t′(i, j) = t(i,j)

δi

8: Else t′(i, j) = t(i,j)
δj

9: }
10: Let MaxT be the maximum flow of trust value of G
11: from u to v with t′(i, j) as the edge capacity
12: Return Te = MaxT

edge-disjoint paths in the trusted graph. The basic idea is
to preprocess the trust value or confidence level on each
edge before applying the maximum flow and minimum
cost flow algorithms.

Similar to B-FlowTrust, the E-FlowTrust algorithm also
normalizes those four trust metrics in Definitions 1-4.
Below, we only show this approximate algorithm from
the perspective of Maximum Flow of Trust Value (MaxT)
(See Definition 1).

4.1.3 Graph Simplification-based FlowTrust Algorithm
(G-FlowTrust)

Most existing works on trust inference are based on
graph simplification. Node/edge-disjoint paths are most
often used for simplifying the trusted graphs. In our
FlowTrust approach, edge-disjoint paths are of signifi-
cant importance since the maximum number of edge-
disjoint paths from the trustor u to the trustee v in a
trusted graph can be considered a “backbone” of the
trusted graph, as discussed in the subsection of the
basic FlowTrust algorithm (B-FlowTrust). In this subsec-
tion, we first introduce the graph simplification-based
FlowTrust algorithm (G-FlowTrust), and then we show
the relationship between the normalized trust metrics
under B-FlowTrust, and those under G-FlowTrust.

6

Algorithm 3 Graph Simplification-based FlowTrust Al-
gorithm from the perspective of Maximum Flow of Trust
Value (MaxT)

1: Input: A trusted graph G = (V, E), u, v ∈ V ,
2: and the trust value t(i, j),∀(i, j) ∈ E
3: Output: The normalized trust value Tg

4: Let MaxP be the maximum number of edge-disjoint
5: paths from u to v in G
6: Let TotalP be the total number of simple paths
7: from u to v in G
8: Find the combination of MaxP out of TotalP paths
9: such that the following conditions satisfy:

10: (1) The MaxP paths are edge-disjoint;
11: (2) MaxT is the maximum flow of trust value of
12: the simplified graph with only the MaxP paths;
13: (3) MaxT is maximum among all combinations of
14: the edge-disjoint MaxP out of TotalP paths.
15: Return Tg = MaxT

MaxP

4.2 Algorithm Analysis

4.2.1 Analysis of B-FlowTrust
We prove that Tb, inferred from the proposed basic
algorithm (B-FlowTrust), falls between the real interval
[0, 1]. If Tb is larger, e.g., close to 1, then the trustor
u intends to put more trust on the trustee v, based on
the trusted graph. In contrast, if Tb is very small, e.g.,
close to 0, then u may not trust v, and thus u may not
communicate with v, based on this trust inference.

Theorem 1: The normalized trust value Tb, inferred
from B-FlowTrust, falls between the real interval [0, 1].

Proof: In a trusted graph G = (V, E), from truster u to
trustee v, the edge capacity (here, the trust value) of each
edge, t(i, j), ∀(i, j) ∈ E, has a value from the real interval
(0, 1]. MaxT is computed by applying the maximum
flow algorithm on G from u to v, with t(i, j) as the edge
capacity. Then, by setting the edge capacity t′(i, j) to be 1
for all edges in E, MaxP can be computed by applying
the same maximum flow algorithm on G from u to v.
It is obvious that 0 ≤ MaxT ≤ MaxP since t(i, j) ≤
t′(i, j), ∀(i, j) ∈ E. We assume that there is at least one
path from the trustor u to the trustee v in the trusted
graph G, that is, 1 ≤ MaxP . So:

0 ≤ Tb = MaxT
MaxP ≤ 1.

This proves the theorem. ¥
Similarly, from the perspective of Maximum Flow of

Confidence Level (MaxC) (See Definition 2), we can ob-
tain the normalized confidence level, denoted Cb=MaxC

MaxP ,
which also falls between the real interval [0, 1].

Also, from the perspective of Minimum Cost Uncer-
tainty with Maximum Flow of Trust Value (MinCMaxT)
(See Definition 3), we can obtain the normalized metric,
denoted CTb=MinCMaxT

MaxP . This normalized metric can be
considered the “average” value by dividing the “total”
minimum cost flow with the “maximum” number of

edge-disjoint paths in the trusted graph. Notice that this
normalized metric is not necessarily a value that falls
between the real interval [0, 1].

Similar to CTb, from the perspective of Minimum
Cost Untrust with Maximum Flow of Confidence Level
(MinTMaxC) (See Definition 4), we can also obtain the
normalized metric, denoted TCb=MinTMaxC

MaxP .

4.2.2 Analysis of E-FlowTrust
We prove that Te, inferred from the edge preprocessing-
based FlowTrust algorithm (E-FlowTrust), falls between
the real interval [0, 1]. We also show that it is an approx-
imation of Tb, inferred from B-FlowTrust, by showing a
special type of trusted graphs, where Te=Tb.

Theorem 2: The normalized trust value Te, inferred
from E-FlowTrust, falls between the real interval [0, 1].

Proof: Consider the trustor u in the trusted graph G.
Let δin

u be the indegree of u, and δout
u be the outdegree

of u. δin
u = 0 since u is the source of the flow network,

and δout
u > 0 since we consider there is at least one path

between the source and the sink (that is, the trustee v) of
the flow network. So, δu = δout

u . Let uk(0 ≤ k ≤ δu − 1)
be the kth associated node corresponding to the kth
outgoing edge of u. Let t′(u, uk) be the capacity (trust
value) after the original t(u, uk) has been preprocessed
by the E-FlowTrust algorithm, where 0 ≤ t(u, uk) ≤ 1.
Let t′′(u, uk)= t(u,uk)

δu
. It is easy to see that:

0 ≤ ∑δu

k=0 t′(u, uk) ≤ ∑δu

k=0 t′′(u, uk) ≤ 1

because t′(u, uk) ≤ t′′(u, uk). This shows that the total
capacity of all the outgoing edges of u is not greater
than 1. This implies that the normalized trust value Te

after edge preprocessing, is also not greater than 1. ¥
Then, we show that Te, inferred from this approximate

algorithm, is equal to Tb, inferred from the basic algo-
rithm for a special type of trusted graphs. Below, is the
theorem and its proof.

Theorem 3: Given G = (V, E), the trustor u and the
trustee v in G. If all the nodes in G have the same node
degree (including indegree and outdegree), and if this
node degree is equal to the maximum number of edge-
disjoint paths from the trustor u to the trustee v, then Te,
inferred from E-FlowTrust, is equal to Tb, inferred from
B-FlowTrust.

Proof: Let MaxT be the maximum flow of trust value
of G = (V, E) from u to v with t(i, j) as the edge capacity
for (i, j) ∈ E. Let MaxP be the maximum number of
edge-disjoint paths in G from u to v. Then, Tb = MaxT

MaxP .
Let the node degree for each node in the graph be δ(≥ 1).
So, t′(i, j) = t(i,j)

δ . Let MaxT ′ be the maximum flow of
G = (V, E) from u to v with t′(i, j) as the edge capacity
for (i, j) ∈ E. It is easy to see that:

Te = MaxT ′ = MaxT
δ = MaxT

MaxP = Tb.

This proves the theorem. ¥

7

This theorem shows a salient feature of E-FlowTrust:
If a trusted graph has a similar (if not the same) node
degree for all the nodes, then the normalized trust value
Te, inferred from the approximate algorithm, will be
close to the normalized trust value Tb, inferred from
the basic algorithm. With more similarity between the
trusted graph in question, and such a special type of
trusted graphs assumed in this theorem, the approximate
algorithm will infer the normalized trust value more
closely to that of the basic algorithm.

Up until now, we have shown only the normalized
trust value Te under E-FlowTrust. Similarly, we can also
obtain the normalized confidence level Ce, the normalized
minimum cost uncertainty with maximum flow of trust value
(CTe), and the normalized minimum cost untrust with
maximum flow of confidence level (TCe). Due to space
restriction, we will not show them in detail. However,
we point out that, when computing CTe, only the trust
value t(i, j) for all edges will be preprocessed, while the
confidence level c(i, j) for all edges will not be prepro-
cessed. Also, when computing TCe, we only preprocess
the confidence level c(i, j) for all edges, and the trust
value t(i, j) for all edges will not be changed.

4.2.3 Analysis of G-FlowTrust
The time complexity of this algorithm is rather high
because it is required to enumerate all combinations of
the edge-disjoint MaxP out of TotalP paths. The total
number of such combinations is:

CMaxP
TotalP = TotalP !

MaxP !∗(TotalP−MaxP)! .

For each combination, it is required to compute MaxT ,
which is the maximum flow of trust value of the simpli-
fied graph with only the MaxP paths. So, it is prob-
lematic in terms of the time complexity. Fortunately,
we aren’t too concerned about the time complexity of
this algorithm because we only need to show that B-
FlowTrust and E-FlowTrust are better than this algorithm
in terms of the trust metrics inferred by these algorithms.
Below, Theorem 4 shows that the normalized trust value,
inferred from G-FlowTrust, is less than or equal to that
inferred from B-FlowTrust. This is reasonable since G-
FlowTrust used a simplified trusted graph, and thus
some trust relationships will be neglected in the trust
inference. In contrast, B-FlowTrust takes into account all
the trust relationships in the whole trusted graph, and
thus the trustor u can get the most out of the trusted
graph regarding the trustworthiness on the trustee v.

Theorem 4: The normalized trust value Tg, inferred
from G-FlowTrust, is less than or equal to the normalized
trust value Tb, inferred from B-FlowTrust.

Proof: Let MaxP be the maximum number of edge-
disjoint paths in G from the trustor u to the trustee v.
By exhaustive enumeration, there are a total number of
TotalP simple paths in G. Apparently, any MaxP edge-
disjoint paths out of the TotalP paths in G, denoted S,
is a sub-graph of G. That is, S ⊆ G. Since Tg is inferred

from S (in fact, the sub-graph from which the maximum
normalized trust value is inferred), and Tb is inferred
from G, thus Tg ≤ Tb. ¥

Up until now, we have only shown G-FlowTrust from
the perspective of Maximum Flow of Trust Value (MaxT),
i.e., the normalized trust value Tg. For brevity, we will
not introduce, in detail, how to infer the normalized
confidence level Cg, the normalized minimum cost uncer-
tainty with maximum flow of trust value (CTg), and the
normalized minimum cost untrust with maximum flow of
confidence level (TCg).

From the above analysis, we can see that all three algo-
rithms can deduce normalized trust metrics. B-FlowTrust
uses intact trust value and confidence level factors as
inputs, and it can deduce normalized trust metrics, but
it does not have a good performance if the trusted
graph is too large, and thus it is not suitable for large-
scale trusted graphs. E-FlowTrust is an approximate
algorithm. If a trusted graph has a similar node degree
for all the nodes, then the normalized trust value inferred
from E-FlowTrust will be close to the value inferred
from B-FlowTrust. G-FlowTrust is an approximation of
B-FlowTrust based on graph simplification, but its time
complexity is rather high because graph simplification
is very time consuming. Notice that the deduced trust
value by G-FlowTrust is less than or equal to that
inferred from B-FlowTrust.

5 SIMULATION STUDIES

In this section, we compare our proposed FlowTrust
approach with existing RelTrust and CircuitTrust ap-
proaches by extensive simulations. In RelTrust, we use
the factoring mechanism [2] (also called the short/open
mechanism [17]) to calculate the reliability between two
terminals in a network of failure-prone elements. In
CircuitTrust, we use the nodal analysis [9] to calculate
the equivalent resistance between two points in a re-
sistive network. Also, we compare our three proposed
FlowTrust algorithms. For simplicity, we suppose that
trust values and confidence levels have been obtained
from mutual interaction experience in real-world sys-
tems, such as web-based social networks, P2P file-
sharing systems, and e-commence systems. So, we can
directly use such values in these three algorithms.

5.1 Simulation Scenarios
1) Scenario I (Example trusted graphs): We present

the inferred trust values, based on example trusted
graphs, using our FlowTrust in comparison with
existing RelTrust and CircuitTrust. These graphs
are also used to infer the normalized trust metrics
by our three FlowTrust algorithms.

2) Scenario II (Random trusted graphs): We randomly
generate many trusted graphs for statistical anal-
ysis on the inferred trust values using RelTrust,
CircuitTrust, and FlowTrust approaches. We also

8

make a statistical analysis on the normalized trust
metrics using our three FlowTrust algorithms.

5.2 Simulation Parameters

Simulation parameters for Scenario I, i.e., example
trusted graphs, are shown in Table 1. Notice that a
threshold of trust value (T − THR) means that all the
trust values are randomly chosen from the real interval
[T-THR, 1]. We present “LOW” threshold (T-THR=0.5)
and “HIGH” threshold (T=THR)=0.8, for each combina-
tion of the number of nodes (#N) and the number of
edges (#E). For brevity, other normalized trust metrics,
such as normalized confidence level, are not shown in
this table. In our simulations, it is required that there are
at least two edge-disjoint trusted paths between a trustor
and a trustee, when generating such example trusted
graphs.

TABLE 1
Simulation parameters for Scenario I

Parameter Description Value
#N Number of nodes 4-20
#E Number of edges 5-30

T-THR Threshold of trust value 0.5, 0.8
C-THR Threshold of confidence level 0.5, 0.8
MaxP Maximum number of edge-disjoint paths ≥2
TRel Inferred trust value using RelTrust [0, 1]
TCir Inferred trust value using CircuitTrust [0, 1]
Tb Normalized trust value using B-FlowTrust [0, 1]
Te Normalized trust value using E-FlowTrust [0, 1]
Tg Normalized trust value using G-FlowTrust [0, 1]

Most simulation parameters for Scenario II are the
same for Scenario I, as shown in Table 1. Due to space
restriction, we only show the different simulation pa-
rameters for Scenario II in Table 2. For each combina-
tion of the number of nodes (#N) and the number of
edges (#E), we randomly generate many simulation runs
(#RUNS). We calculate the average differences between
different approaches and different algorithms. On the
one hand, in order to compare the RelTrust, CircuitTrust,
and FlowTrust approaches, we select the inferred trust
values by RelTrust as a baseline to calculate the abso-
lute differences between other approaches and RelTrust,
and finally, the arithmetic average of these absolute
differences. On the other hand, in order to compare the
B-FlowTrust, E-FlowTrust, and G-FlowTrust algorithms,
we select the normalized trust metrics by B-FlowTrust as
a baseline to calculate the absolute differences between
other algorithms and B-FlowTrust, and finally, the arith-
metic average of these absolute differences.

Notice that a “baseline” is shown in the table right
after the “/” symbol. As shown in this table, the baseline
of “Rel” means that the RelTrust approach is chosen
as the baseline approach to be compared with other
approaches, including CircuitTrust and FlowTrust. Also,
the baseline of “b” means that the B-FlowTrust algorithm

is chosen to be compared with other algorithms, includ-
ing E-FlowTrust and G-FlowTrust. For example:

TCir/Rel=
∑#RUNS

i=1
ABS(T i

Cir−T i
Rel)

#RUNS ,

where ABS is the absolute value function, and i stands
for the ith round of simulation runs.

TABLE 2
Simulation parameters for Scenario II

Parameter Description Value
#RUNS Number of simulation runs 200
TCir/Rel Avg. of abs. diffs between TCir and TRel [0, 1]
Tb/Rel Avg. of abs. diffs between Tb and TRel [0, 1]
Te/Rel Avg. of abs. diffs between Te and TRel [0, 1]
Tg/Rel Avg. of abs. diffs between Tg and TRel [0, 1]
Te/b Avg. of abs. diffs between Te and Tb [0, 1]
Tg/b Avg. of abs. diffs between Tg and Tb [0, 1]
CTe/b Avg. of abs. diffs between CTe and CTb [0, 1]
CTg/b Avg. of abs. diffs between CTg and CTb [0, 1]

5.3 Simulation Results

We first make two tables to present simulation results
for Scenario I. Then, we draw two figures for Scenario
II.

Table 3 compares the inferred trust values using Rel-
Trust, CircuitTrust, and FlowTrust. In all our simulation
settings, RelTrust infers the largest trust values. In addi-
tion, in most of our simulation settings, FlowTrust infers
the smallest trust values. That is, CircuitTrust infers
the trust values in between RelTrust and FlowTrust in
most cases. The reason for RelTrust to always obtain
the largest trust values is that the network reliability
model assumes that a system is operational if there is at
least one operational path between two terminals. This
is relatively easy to satisfy since our example trusted
graphs have at least two paths in between a trustor
and a trustee. Regarding CircuitTrust and FlowTrust,
we can observe that CircuitTrust can obtain larger trust
values than FlowTrust in most cases, but there are some
exceptions.

TABLE 3
Comparison of inferred trust values using RelTrust,

CircuitTrust, and FlowTrust

#N #E T-THR MaxP RelTrust CircuitTrust FlowTrust
TRel TCir Tb Te Tg

4 5 LOW 2 0.82 0.74 0.58 0.58 0.58
4 5 HIGH 2 0.92 0.81 0.85 0.85 0.85
8 12 LOW 2 0.80 0.73 0.63 0.36 0.61
8 12 HIGH 3 1.00 0.95 0.87 0.76 0.87
12 18 LOW 2 0.80 0.73 0.74 0.42 0.59
12 18 HIGH 2 0.98 0.83 0.82 0.41 0.82
16 24 LOW 2 0.89 0.72 0.74 0.47 0.59
16 24 HIGH 2 0.98 0.85 0.89 0.46 0.80
20 30 LOW 2 0.73 0.55 0.64 0.36 0.58
20 30 HIGH 3 1.00 0.89 0.85 0.64 0.84

9

Fig. 6. Statistical results on the inferred trust values using
RelTrust, CircuitTrust, and FlowTrust approaches.

Table 4 compares the normalized trust metrics using
B-FlowTrust, E-FlowTrust, and G-FlowTrust. We can ob-
serve that B-FlowTrust always infers the largest nor-
malized trust values (and also the largest normalized
confidence levels) among these three algorithms. This is
in accordance with our Theorem 4. We can also observe
that G-FlowTrust always infers all the four normalized
trust metrics which are close to B-FlowTrust. This shows
that the graph simplification-based algorithm does work
in our FlowTrust approach, although such an algorithm
may lose some information due to the fact that some
trust relationships will not be taken into account in the
trust inference. However, we point out that this works
well only when we can find a set of disjoint paths in
a trusted graph that can maximize the inferred trust
value (and also the inferred confidence level). In our
simulations, we used the exhaustive enumeration to find
such a set, however, it is very time consuming.

Fig. 6 shows the statistical results of the inferred trust
values using RelTrust, CircuitTrust, and FlowTrust ap-
proaches. All the statistical results are obtained by aver-
aging on all the simulation runs of #RUNS = 200. Our
comparison used RelTrust as the baseline approach since
it always infers the largest trust values among the three
approaches. The X-axis shows the size of a trusted graph,
indicated by the number of nodes (#N) and the number
of edges (#E). The Y-axis shows the average value of the
absolute differences between different approaches, Avg.
Diffs for short. We can observe that there is an apparent
gap between any pair of these approaches. Basically, this
means that different approaches are comparable to each
other, although their inferred trust values are different
from each other. To put it another way, if we remove the
gap between a pair of these approaches, then we can
show their equivalence between each other.

Fig. 7 shows the statistical results of the normalized
trust metrics using our three FlowTrust algorithms. All
the statistical results are obtained by averaging on all the
simulation runs of #RUNS = 200. Our comparison used
B-FlowTrust as the baseline algorithm since it always
infers the largest normalized trust values (and also the
largest normalized confidence levels) among the three
algorithms. The X-axis shows the size of a trusted graph,
and the Y-axis shows Avg. Diffs, as introduced above.

Fig. 7. Statistical results on the normalized trust metrics
using our three FlowTrust algorithms.

Since each algorithm infers four normalized trust met-
rics, we can obtain eight such metrics for E-FlowTrust
and G-FlowTrust algorithms. We only report here four
metrics, i.e., Te, CTe, Tg , and CTg, since the other four
metrics have the same trend as observed from these four
metrics.

From all the simulation settings in Fig. 7, we can
observe that G-FlowTrust infers all the normalized trust
metrics that are close to B-FlowTrust. So, G-FlowTrust
can be considered a good approximation of B-FlowTrust.
The problem is that we need first to find the maxi-
mum number of edge-disjoint paths in a trusted graph
that also maximizes the normalized trust values (also
the normalized confidence levels). This is not a trivial
problem. So, we used the exhaustive enumeration in
our simulations for illustrative purposes, which is quite
time consuming. In addition, we can also observe an
apparent gap between E-FlowTrust and B-FlowTrust in
this figure. This gap shows that E-FlowTrust may not
be a good approximation of B-FlowTrust in the general
case. However, we point out that it would be a good
approximation if all the node degrees in a trusted graph
are the same (or similar), and they are also the same
(or similar) with the maximum number of edge-disjoint
paths (See Theorem 1). All in all, the simulation results
can reflect the availability of the algorithms to a great
extent, although the real-world experiments are very
important for the validation of new algorithms. Also, by
comparison with CircuitTrust and RelTrust, we can find
that FlowTrust is a relatively conservative approach and
suitable for pessimistic users that are prone to put low
trust on others.

10

TABLE 4
Comparison of normalized trust metrics using B-FlowTrust, E-FlowTrust, and G-FlowTrust

#N #E T-THR C-THR MaxP B-Flow Trust E-Flow Trust G-Flow Trust
Tb Cb CTb TCb Te Ce CTe TCe Tg Cg CTg TCg

4 5 LOW LOW 2 0.64 0.81 0.15 0.48 0.43 0.54 0.10 0.32 0.64 0.80 0.15 0.48
4 5 LOW HIGH 2 0.60 0.86 0.15 0.58 0.40 0.57 0.10 0.38 0.60 0.80 0.16 0.51
4 5 HIGH LOW 2 0.80 0.69 0.40 0.26 0.53 0.46 0.26 0.17 0.80 0.69 0.40 0.26
4 5 HIGH HIGH 2 0.86 0.88 0.18 0.20 0.57 0.59 0.12 0.13 0.86 0.85 0.18 0.19
8 12 LOW LOW 2 0.63 0.52 0.40 0.33 0.36 0.42 0.23 0.29 0.61 0.52 0.37 0.33
8 12 LOW HIGH 2 0.64 0.84 0.18 0.63 0.36 0.44 0.11 0.32 0.57 0.82 0.13 0.60
8 12 HIGH LOW 3 0.87 0.61 0.51 0.13 0.76 0.51 0.47 0.10 0.87 0.61 0.51 0.13
8 12 HIGH HIGH 2 0.83 0.84 0.32 0.33 0.41 0.42 0.16 0.17 0.83 0.84 0.32 0.33
12 18 LOW LOW 2 0.74 0.79 0.61 0.66 0.42 0.49 0.32 0.43 0.59 0.71 0.47 0.59
12 18 LOW HIGH 2 0.61 0.88 0.27 1.03 0.36 0.47 0.18 0.59 0.54 0.84 0.23 0.94
12 18 HIGH LOW 2 0.82 0.80 0.81 0.37 0.41 0.40 0.40 0.19 0.82 0.68 0.81 0.23
12 18 HIGH HIGH 2 0.87 0.82 0.33 0.32 0.45 0.41 0.17 0.16 0.86 0.82 0.33 0.32
16 24 LOW LOW 2 0.74 0.62 0.75 0.56 0.47 0.45 0.52 0.52 0.59 0.61 0.51 0.48
16 24 LOW HIGH 2 0.58 0.83 0.32 0.96 0.32 0.45 0.15 0.48 0.57 0.83 0.31 0.96
16 24 HIGH LOW 2 0.89 0.50 1.42 0.26 0.46 0.25 0.75 0.13 0.80 0.50 1.24 0.26
16 24 HIGH HIGH 3 0.82 0.85 0.33 0.39 0.75 0.78 0.40 0.45 0.82 0.83 0.32 0.36
20 30 LOW LOW 2 0.64 0.54 0.92 0.72 0.36 0.35 0.52 0.48 0.58 0.54 0.74 0.72
20 30 LOW HIGH 2 0.61 0.80 0.47 1.46 0.35 0.44 0.26 0.79 0.54 0.80 0.41 1.46
20 30 HIGH LOW 3 0.85 0.67 0.59 0.27 0.64 0.55 0.44 0.22 0.84 0.63 0.57 0.23
20 30 HIGH HIGH 3 0.85 0.83 0.40 0.46 0.71 0.73 0.40 0.50 0.83 0.80 0.38 0.42

6 CONCLUSION

Trust has been studied for many years, particularly in
P2P networks [23] and mobile ad-hoc networks [1]. Trust,
in social networks, is relatively new. But, trust becomes
more and more important due to the rapid development
of social networking applications in recent years. Our
proposed FlowTrust is quite easy to understand, and
it can also support multi-dimensional trust in social
networks. With the proposed approach, we can deduce
trust in web-based social networks, P2P networks, and
many others. The inferred trust results will provide
important indications for related applications, such as
recruiting trustworthy employees from social networks,
and purchasing products from trustworthy online stores.
Of course, this approach is only one trust evaluation
method, and can be integrated into any trust manage-
ment systems. Basically, FlowTrust can efficiently deal
with small trusted graphs since the network flow algo-
rithms may not be efficient for large networks. However,
most social networks are large networks, so, there is
a gap between large social networks and small trusted
graphs. We argue that this gap can be overcome by de-
veloping algorithms to deduce small graphs from large
networks, based on existing theoretical results, such as
the Six Degrees of Separation phenomenon [22]. According
to this phenomenon, in most cases, the maximum path
length between a trustor u and a trustee v can be
confined to six. Currently, we are working on how to
deduce a small trusted graph that is adequate enough
for trust inference from a large social network. Here,
“adequate enough” means to achieve similar “fairness”
in node/edge-disjoint multiple paths when selecting
nodes and edges to form a trusted graph.

ACKNOWLEDGMENTS

This work is supported by the National Natural Sci-
ence Foundation of China under Grant Nos. 90718034,
61073037 & 60773013, the Hunan Provincial Natural
Science Foundation of China for Distinguished Young
Scholars under Grant No. 07JJ1010, and the Changsha
Science and Technology Program under Grant Nos.
K1003064-11 & K1003062-11.

REFERENCES

[1] T. Anantvalee and J. Wu, Reputation-Based System for Encouraging
the Cooperation of Nodes in Mobile Ad Hoc Networks, Proc. of IEEE
ICC 2007, pp. 3383C3388, June 2007.

[2] C. J. Colbourn, The Combinatorics of Network Reliability, J. Hopcroft,
Ed., ISBN 978-0195049206, Oxford University Press, 1987.

[3] Facebook, http://www.facebook.com/.
[4] P. Flocchini and F. L. Luccio, Routing in Series Parallel Networks.

Theory of Computing Systems, 36(2): 137-157, 2003.
[5] D. Gefen, Reflections on the Dimensions of Trust and Trustworthiness

among Online Consumers, ACM SIGMIS Database, 33(3): 38-53,
August 2002.

[6] J. Golbeck and J. Hendler, Inferring Binary Trust Relationships in Web-
Based Social Networks, ACM Transactions on Internet Technology,
6(4): 497-529, November 2006.

[7] N. Griffiths, Task Delegation Using Experience-Based Multi-
Dimensional Trust, Proc. of AAMAS 2005, pp. 489-496, July
2005.

[8] L. Guanfeng, W. Yan, and M. Orgun, Trust Inference in Complex
Trust-Oriented Social Networks, Proc. of IEEE CSE 2009, pp.29-31,
August 2009.

[9] W. H. Hayt, J. E. Kemmerly, and S. M. Durbin, Engineering Cir-
cuit Analysis, Seventh Edition, ISBN 978-0471407409, New York:
McGraw-Hill Higher Education, February 2007.

[10] A. Hnativ and S. A. Ludwig, Evaluation of Trust in an eCommerce
Multi-agent System Using Fuzzy Reasoning, Proc. of the IEEE 18th
international conference on Fuzzy Systems, pp.20-24, August 2009.

[11] A. Jøsang, R. Hayward, and S. Pope, Trust Network Analysis with
Subjective Logic, Proc. of ACSC 2006, pp. 85-94, January 2006.

[12] LinkedIn, http://www.linkedin.com/.
[13] G. Mahoney, W. Myrvold, and G. C. Shoja, Generic Reliability Trust

Model, Proc. of PST 2005, pp. 113-120, October 2005.

11

[14] L. Mui, M. Mohtashemi, and A. Halberstadt, A Computational
Model of Trust and Reputation, Proc. of HICSS 2002, pp. 2431-2439,
January 2002.

[15] MySpace, http://www.myspace.com/.
[16] M. K. Reiter and S. G. Stubblebine, Resilient Authentication Using

Path Independence, IEEE Transactions on Computers, 47(12): 1351-
1362, December 1998.

[17] D. P. Siewiorec and R. S. Swarz, Reliable Computer Systems: Design
and Evaluation, Third Edition, ISBN 978-1568810928, AK Peters,
Ltd., October 1998.

[18] Y. L. Sun, W. Yu, Z. Han, and K. J. R. Liu, Information Theoretic
Framework of Trust Modeling and Evaluation for Ad Hoc Networks,
IEEE Journal on Selected Areas in Communications, 24(2): 305-317,
February 2006.

[19] M. Taherian, M. Amini, and R. Jalili, Trust Inference in Web-Based
Social Networks using Resistive Networks, Proc. of ICIW 2008, pp.
233-238, June 2008.

[20] G. Theodorakopoulos and J. S. Baras, On Trust Models and Trust
Evaluation Metrics for Ad Hoc Networks, IEEE Journal on Selected
Areas in Communications, 24(2): 318-328, February 2006.

[21] G. Wang and J. Wu, Multi-Dimensional Evidence-Based Trust Man-
agement with Multi-Trusted Paths, Future Generation Computer
Systems (Elsevier), Published Online on May 7, 2010, DOI:
http://dx.doi.org/10.1016/j.future.2010.04.015.

[22] D. J. Watts, Six Degrees: The Science of a Connected Age, ISBN 978-
0393325423, W. W. Norton & Company, February 2004.

[23] L. Xiong and L. Liu, PeerTrust: Supporting Reputation-Based Trust
for Peer-to-Peer Electronic Communities, IEEE Transactions on Knowl-
edge and Data Engineering, 16(7): 843-857, July 2004.

[24] Y. Zuo, W.-C. Hu, and T. O’Keefe, Trust Computing for Social
Networking, Proc. of ITNG 2009, pp. 1534-1539, April 2009.

Guojun Wang received a B.Sc. in Geophysics,
a M.Sc. in Computer Science, and a Ph.D. in
Computer Science from Central South University
(CSU), China. Since 2005, he is a Professor at
CSU. Since 2006, he is a doctoral supervisor at
CSU. He is the Director of Trusted Computing In-
stitute of CSU. He is a Vice Head of Department
of Computer Science and Technology of CSU.
He has been an Adjunct Professor at Temple
University, USA, a Visiting Scholar at Florida
Atlantic University, USA, a Visiting Researcher

at the University of Aizu, Japan, and a Research Fellow at the Hong
Kong Polytechnic University, Hong Kong. His research interests include
trusted computing, mobile computing, pervasive computing, and soft-
ware engineering. He is a member of IEEE, and a senior member of
CCF (China Computer Federation).

Jie Wu is Chair and Professor at the Depart-
ment of Computer and Information Sciences at
Temple University. He is an IEEE Fellow. He is
on the editorial board of IEEE Transactions on
Mobile Computing. He was a Distinguished Pro-
fessor in the Department of Computer Science
and Engineering, Florida Atlantic University. He
served as a Program Director at US NSF from
2006 to 2008. He has been on the editorial board
of IEEE Transactions on Parallel and Distributed
Systems. He has served as a distinguished vis-

itor of the IEEE Computer Society and is the chairman of the IEEE
Technical Committee on Distributed Processing (TCDP). His research
interests include wireless networks and mobile computing, parallel and
distributed systems, and fault-tolerant systems.

